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EXTENDIBILITY AND TRANSVERSALITY

STEPHEN J. GREENFIELD & MICHAEL MENN

1. Introduction

In [1] Errett Bishop wrote: “It is thought that a manifold M™*! C C™ has,
in general, the property that holomorphic functions in a neighborhood of M
extend to be holomorphic in some fixed open set.” In this paper we analyze
Bishop’s statement and discover an interpretation for “in general”.

We say a subset K of C" is extendible to a connected subset K’ of C* (with
K o K’) if every function holomorphic about K extends to a holomorphic func-
tion defined in a neighborhood of K’.

In 5] conditions were obtained for a_real (n + k)-dimensional submanifold
M of C" to be extendible to a set containing an open subset of C*. These con-
ditions were stated in terms of holomorphic and antiholomorphic vector fields
on M and their Lie brackets.

But from the point of view of [8] the conditions mentioned above can be
interpreted as restrictions on the (n + k)-jet of the map i: M — C™, where i is
the inclusion of M in C™. Careful examination of the restrictions on the jet of i
reveals that “most” (n 4+ k)-jets satisfy these restrictions; so, therefore, do
“most” maps in C™ topology, for m large enough (verifying Bishop’s remark).
More precise statements of this are made in § 4, where a corollary on function
algebras is also deduced.

In §2 the notation and some of the main ideas of [8] are reviewed with
special attention to the situation considered here. Computatxons comparing jets
of maps and Lie brackets are done in § 3.

2. Singularities of maps of real manifolds into complex manifolds

If $: X — Y is a map of topological spaces and x € X, then ¢, will denote
the germ of ¢ at x. Let #F(p,q) = {¢: R? — R"|¢ is C~ and ¢(0) = O} and
I, q) = {¢|p e Fp,}. If 6 F(p,q) or ¢ € J(p, q), then [¢]* will denote
the set of germs at the origin of elements of #(p, g) which agree with ¢ up to
and including order n. Let J*(p, @) = {[¢]1"|¢ € J(p, @)}. J*(p, @) is a real finite
dimensional vector space. [¢]* will occasionally be abbreviated to ¢.

Whenever m is an integer, .#,, will denote the group of invertible germs in
J(m,m). There is a group action of ¥, X £, on J™p,q); (a, p)4]" =
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[Bpa~'1". Similar definitions can be made in the complex case. Let CF (p, q)
={¢: C? — % ¢ is holomorphic and ¢(0) = 0}, CJ(p, q) = {¢,| ¢ €« CF (p, @)},
Ci*p, @) = {{¢1"|¢ € Ci(p, @)}, and CZ, be the group of invertible germs in
Clim,m). C¥, X C¥, acts on CJ*(p, q).

By manifold we mean real C~ paracompact Hausdorff manifold. All maps
of manifolds are C~. By complex manifold we mean complex analytic para-
compact Hausdorff manifold. Maps of complex manifolds are holomorphic.

Let U C R?(U C C?) be open and let ¢: U — R (¢: U — €9). Define
t,: U— I(p,9(t,: U— Cl(p, q)) by t,(x) to be the germ at the origin of y —
#(x + ¥) — é(x). The projection of t, onto J*(p, g)(CJ*(p, q)) will also be
written .

Let £,(C#,) be a subgroup of £,(C# ). Suppose M is an m-dimensional
(complex) manifold and Q is an atlas of coordinate functions for M. The pair
(M,Q) will be called a (complex) manifold of type .Z,(CZ,) if
Ly 1@ (%) € £ ,(CZ,,) for all xe M and coordinate functions a,, a, € Q
whose domain contains x. The atlas Q will be suppressed from the notation.

If X is a (complex) p-manifold and Y is a (complex) g-manifold, then
JMX,Y)CI(X,Y)) will denote the fiber bundle with base X X Y, fiber
J*(p, @)(CI*(p, @)) and group ¥, X LAC¥, X CZL,). If X is a (complex)
manifold of type Z,(C.#,) and Y is a (complex) manifold of type ¥, (C2,),
then the group of J*(X, Y)X(CJ*(X, Y)) is reducible to .Z, X L(CZ%, X CZ,).

Let X and Y be manifolds of type .#, and .Z,, respectively. If 4 CJ*(p, q)
and is invariant under :Zp X L?’q, then A determines a subbundle J*(X,Y ; A)
of JX(X,Y). If A is a submanifold of J*(p, q), then J*(X, Y ; A) is a submani-
fold of J*(X, Y). Furthermore, the codimension of J*(X, Y ; A) on J*(X, Y) is
the codimension of A in J*(p, q).

J™(X,Y) may be looked at as the set of n-equivalence classes of germs of
maps of X into Y where two germs are n-equivalent if they agree to order a.
If f: X —Y and x ¢ X, let f*(x) be the n-equivalence class containing the germ
of f at x.. Thus a map f: X — Y induces a commutative triangle:

JMX,Y)
ya
X XxY

@id,f

Let A(f), the singular set of f of type A4, be defined by A(f) = (f*)~'J*(X,
Y; A). If f is such that f* is transversal to J*(X, Y; A4), then f will be called
A-transversal. If f is A-transversal, then A(f) is a submanifold of X with
codimension equal to that of A in J*(p, g). Similar definitions and statements
may be made in the complex case.

Iff: X - Y, let Tf: TX — TY be the induced map of tangent bundles.
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If (a,, - - - ,a,,) is a tuple of integers with0 < a,, < - - - < a,, define P(a,, - - -,
a,) to be the dimension of the symmetric product R*»o - - . c R* (see (8, § 6]
for a definition of the symmetric product).

Theorem 2.1. Let p and q be positive integers. It is possible to assign to
each tuple (a,, - - -, a,) of nonnegative integers, with a, > p — q and a, >
> a,, a submanifold Z(a,, - - -, a,) of J™(p, q) in such a way that

i) each Z(a, ---,a,) is invariant undr £, X %,

i) if f: X > Y is a map of a p-manifold into a g-manifold, then Z(a)(f)
= {x € X |dimension kernel Tf, = a},

iii) if f: X—>YisaZa,---,a,)transversal map of a p-manifold into a
g-manifold (so Z(a,, - - -, a,)(f) is a manifold), then Z(a,, ---,a,,a,,)(f) =
{xe Z(ay, - - -, a)(f)|dimension (kernel Tf, N TZ(a,, - -+, a,)(z) = Gn1}s

iv) if f: X - Y is Z(a)-transversal, then the codimension of Z(a)(f) in X is
alg—p+a).lfm>2andfis Z(a, - -,a,_,)-transversal and Z(a,, - - -, a,)-
transversal, then the codimension of Z(a,, - --,a,)(f) in Z(a,, ---,a,_)f) is
P(aI’ ct am)(q —p+ a]) - Z?:Z P(ai’ Tty aﬁ)(ai-l - ai)°

For a proof, see {2] or [8].

It is possible to define complex submanifoids CZ(«a,, - - -, a,) of CJ*(p, q)
which are invariant under C.¥, X C.%, behaving analogously to the Z(a,, - - -,
a,) with respect to holomorphic maps of complex manifolds. The proof is
formally identical to that of Theorem 2.1.

If X and Y are manifolds, let C™(X, Y) denote the set of C~ maps of X into
Y, provided with the topology of compact convergence of all partials of order
less than or equal to n.

Let B be a submanifold of /*(X,Y). Then, according to the Thom trans-

versality theorem, {f: X — Y|f* is transversal to B} is dense (in fact, a Baire
set) in C**(X, Y). If X is compact, this set is open as well as dense in C**}(X,
Y). See [7] for a proof of the transversality theorem.

If f: X — R? (or f: X — C9), then f; will denote the jth coordinate function
of f. If ¢: R — R™, define ¢: C? — C? by ¢,(x} + ix}, -+ -, x0 + ix}) =
Gyt - XP Xy e XE) iy, (X, -, X2, xE, -+, x8). (Note that ¢ is not
necessarily holomorphic.) If S C CJ(p, g), let § = {¢ € J(2p,29)|$ € S}. A real
2g-manifold Y is a complex g-manifold if and only if Y is a manifold of type
czy) .

If P: R? — R* is a polynomial with Py(x,, - - -, x,) = 3 @, . 5% --x7,
Jistetsdp
define po(P): C? — C? by
(PP)j(Zn ] ZP) = ZJ; ----- Ip (a;:l nnnnn ] + la‘”] fr)ziil t 'Zip )

The function p induces a map J*(p, 2q) — CJ*(p, @) also denoted by p. This
~ map is an isomorphism of real vector spaces. If 4 is a submanifold of CJ*(p,
q) then, since p is an isomorphism, p~!(A4) is a submanifold of J*(p, 2g9). It is
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easy to show that if 4 is invariant under C%¢, X C%,, then p~'(A4) is invariant
under £, X (CZ,)".

Thus if X is a p-manifold, Y is a complex g-manifold, a, > p — g and
a>--->a, >0, then JNX,Y; p"'CZ(a,, -, a,)) is a submanifold of
"X, Y).

Let X and Y be as above and let f: X — Y be C~ (as a map of real mani-
folds). It is immediate that p='CZ(a,)(f) = {x € X|the complex span of TH(TX)
is a (p — a))-dimensional complex subspace of TY,,}. Suppose p < 2g so
that it is possible for Z(0)(f) to be nonempty. From the fact that Z(0)(f) is
open in X, it follows that if f is p~'CZ(a,)(f)-transversal, then Z(0)(f) N
o~ 'CZ(a,))(f) is a submanifold of X with codimension 24,(g — p + a,). Define a
vector subbundle K of TX over Z(0)(f) N p~'CZ(a)(f) by K = {v|v e TX, for
some x € Z(0)(f) N p~'CZ(a,)(f) and iTf(v) e TATX)}. The fiber of K is 2a,-
dimensional. Define a: K — K by Tf(a(v)) = iTf(v).

R** will be identified with C? by associating the tuple (@, + ib,, - - -, a, + ib,)
with the tuple (a,, -+ -, a,, b, - - -, b,). We will need the following computa-
tional facts about p: Let f ¢ #(p, 29) be a polynomial and let v, w e TR}. Let
e: I*(p, 2q) — CIl*(p, q) be as above. Then it is simple to show:

1) T(eHw + iw) = Tf(W) + iTf(w),

i) Tt,,(v + iw)=T,Tt,(v) + iT,Tt,(w).

Proposition 2.2. Let X be a real p-manifold, Y be a complex gq-manifold,
and F: X - Y be p 'CZ(a,, - - -,a,)-transversal. If x e Z(0)(f) N p~'CZ(a,,
<o a,)(f), let W, = {v e K, |v and a(v) both are elements of Tp"'CZ(a,, - - -,

a )(N}. Let V = {xe ZOO)f) N p~'CZ(a,, - - -, a,)(f) |dimension W, = 2a,,, }.
Then V C Uysa,,, 0 'CZ(ay, - - -, a,, b)f).

Proof. This is a local question. Suppose X = R?, Y = C% = R*,f: R? - C"
is a p7'CZ(a,, - - -, a,)-transversal polynomial, and Oe V. Let v, - - -, v, €
TR} be such that W, = span {v, -, v,,,,a(v), - - -, a(v,,, )} It follows
from i) that for j =1, .., a,,,, T(pHN(v; + ia(v,)) = Tf(v,) + iTf(a(v,)) = 0.

We will show that v, + ia(v,) e kernel T(pf), N TCZ(a,, - - -, a,)(pf), for
each j so that the complex dimension of kernel T(of),N TCZ(a,, - - -, a,)(pf), is
at least a,,,. If we also show that pf is CZ(q,, - - +, a,)-transversal at 0, then

the result will follow from the complex analogue of Theorem 2.1.

J™(R?, R*) = R? X R* X J™(p,2q), and ¢, is the projection of f™ onto
J™p,2q). Thus p~'CZ(a,, - - -, a,)f) = t; (p~'CZ(a,, - - -, ay)), and ¢, is trans-
versal to p~'(CZ(a,, - - -, a,)). fv, we TR?, then Tt (v + iw) = T, Tt,(v) +
iT,Tt,(w). That ¢,, is transversal to CZ(a,, - - -, a,,) at O follows from the fact
that ¢, is transversal to p~'CZ(a,, - - -, a,). Thus v + iw e TCZ(a,, - - -, a,,)(pf)
if and only if T¢,,(v + iw)e TCZ(a,, ---,a,). But for j=1,...,m,
Tt,,(v; + ia(v))) = T,Tt,(vy) + iT, Tt (a(v,)). Since v, and a(v;) both are
elements of Tp~'CZ(a,, - - -, a,)(f), Tt,(v;) and Tt,(a(v,)) are elements of
Tp™'CZ(ay, - - -,a,). Thus Tt,,(v; + ia(v;)) e TCZ(a,, ---, ay,), and v, +
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ie(v;) € TCZ(a,, - - -, a,)(of). Hence the proposition is proved.

Example 2.3. Let f: R* — C? be defined by f(x,y) = (x + iy, i(x* + y9).
f is p~'CZ(1)-transversal. Furthermore, 0¢ Z(0)(f) N p~'CZ(1, 1)(f), but
W, N TZO)(f) = {0} since TZ(0)(f) = {0}.. It follows that the inclusion
VC Upsan,, 0 'CZay, - - -, ay, b)(f) of Proposition 2.2 cannot be replaced by
VCp'CZa, - -,an,,,).

It is possible, despite Example 2.3, to interpret the sets p™'CZ(a,, - - -, a4, . () -
(for suitably transversal f) in a more precise fashion than Proposition 2.2. This
would, however, take space. The point we are trying to make here is that the
singular types constructed in [8] give rise to singular types of maps of real
manifolds into complex manifolds.

3. Lie brackets

If U is an open subset of R?, then ¢: U — R? and x € U define D¢, : R? —
R by T¢(v,) = (D, (V). Dp will abbreviate Dg,. Let X C J*(p,q) be
open, and E,, E,, B be vector subbundles of 3 X R?. Define F by the exact-
ness of 0 - B— 3 X R* — F — 0. Let z: J**'(p, q) — J™(p, q) be the projec-
tion.

If s and ¢ are nonnegative integers, let M(s, t) denote the set of linear maps
from R® to R'. Give M(s,1) the usual structure as a real vector space, so we
may identify M(s, 1) with R*.

Suppose that the fiber dimension of E; is e(i). Let ¢ € #(p, q) be such that
{#]* € &, and U be a neighborhood of [¢]” in X' such that E, and E, are both
trivial over U. Then there are bundle equivalences §;: U X R*® — E;/U. Define
C= maps C;: U— M(e(i), p) by &,(v]", v) = ([¥]*, C([¥ 1) (). C,([v]™)
has rank e(i) and its image is {w ¢ R?{([']*, w) € E;}. Straightforward linear
algebra shows that there are an integer N and smooth functions A4;: U—-M(p,N)
such that ([v]*, v) € E; if and only if 4,([+]*)(v) = 0.

Let v;: U — E; be sections for i = 1, 2. Recall that since ¢ € F(p, q) there
is a map t,: R? — J*(p, q). The sections v; are pulled back to sections t}v; of
tyE; over t;'(U). Note that the bundles ¢JE; and t}B are equivalent to sub-
bundles of TR? over ¢;'(U). Furthermore, there is an exact sequence 0 — B

— TR? —=» t*F — 0 over ;'(U).

Define 7;: 1;'(U) — R? by: t}v,(x) = (9,(x)),. 4,(t,(x))-7,(x) is zero for
each x e t;'(U). Consequently all directional derivatives of A4,(¢,(-))7,(-) are 0.
Thus (D(4, 0 1,)(7,(0))) - 5,(0) + 4,(I¢]™) - D?,(7,(0)) = 0 and (D(4;-1,)(7,(0)))
-7(0) + A,([¢]*) - DT,(3,(0)) = 0. Since D(A;-t,) is determined by [¢]**' and
the kernel of A,([¢]") is {v|v, e (tFE),}, it follows that the Lie bracket
[t}¥v,, tv,](0) is determined up to (t}E; + t}E,), by [¢]**' and the v,([¢]").

1f we suppose that E; C B for i = 1, 2, then &([t}v,, tfv,](0)) is determined
by [¢]”*! and v,([¢]™). Ef @ EFf @ F = {([v]*, L) |[¥]* € ¥ and L: (E )y X
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(E)yyn — Fryon is bilinear}. Thus, if each E; C B, then Lie bracketing induces
a morphism 7: #7'2 — E¥ ® E} @ F of fiber bundles over 2. If a is less than
or equal to the fiber dimension of F, define (7, a) to be the set of points  in
77’2 such that the linear map (E); 4. @ (Ej)py3n — Fpype corresponding to y(1)
has rank a.

A function f: J*(p, g) — R will be called a polynomial if, given some choice
of vector space basis for J*(p, q), f is a polynomial in the coordinate functions
of J*(p,q). A function g: J*(p, q) — R°® will be called a polynomial if each
coordinate projection of g is a polynomial.

Suppose 5 is such that there is a polynomial g: J*(p, q) — RY such that
3 = {[$]"| 9([¢]™) # O}. Let U be a vector subbundle of 3 X R?. We will say
that U is polynomially determined if there are an integer K and a polynomial
function G: J*(p, q) — M(p, K) such that for [\]* ¢ X, then ([¥]*,v) e U if
and only if G([+]*)-v = 0. It is apparent that if the bundles E,, E, and B are
polynomially determined, each X(y, a) is determined by polynomial equalities
and inequalities. If a is maximal with respect to the property that 3(y, a) #+ ¢,
then there is a polynomial 4 on J%;}, such that []"*' € 2(7, a) if and only if
A([v]**") # 0. Consequently, S(y, a) is open.

Now suppose that £, C £, and £, C &, are subgroups, and that 5 is
invariant under the action of .2, X Z,. Define an action of Z, X 2, on
2 X R? by (a, p)[p]*, v) = ([Bpa']*, Da()), and suppose that E,, E, and B
are invariant under £, X Z,. The actions of .Z, X #, on 2 X R? and B
determine an action on F. The actions on E,, E, and F determine an action on
E* ® E¥ @ F as follows: an element of E}f ® E¥ @ F is a pair ([¢]", L) where
[¢]* € 3 and L: (E)),3n X (Ep)ym — Fpyp0 is bilinear. Define (a, S)([¢]", L) =
((Bpa'1", (@, L) where (a, f)L is defined by ((@, BILI(([fga~]*, Dav),
([Bga™ 1™, Daw)) (e, BIL(([¢]", v), ([4]7, w))). We now show that 7 is equ1va-
riant thereby showing that 3(y, @) is invariant under P, X J,I

Let U, openin X, be such that E, and E, are trivial over U, and let v,: U —
E; be sections. If (a, f) € £, X :f,, then, for i = 1, 2, (@, B)v; is a section of E,
over (a, HU. Since (tf,.-.(x, pv ) e(x)) = Ta(tfv,)(x)), it follows that

[tfsa-sla, Do, thyo-sla, P,1(0) = Taltfv,, tfv,)(0) .

The equivariance of y is now immediate. '

Since (7, a) is invariant under .2, X %, and is determined by polynomial
equalities and inequalities, it may (see [3]) be written as a finite union of dis-
joint manifolds each of which is invariant under .Z, x Z,.

Let X be a manifold of type Z,, and Y a manifold of type .Z,. Then
J""NX,Y; 3(y, a)) is a finite union of disjoint manifolds. If a is maximal with
respect to the property that 3(y,a) # ¢ then U, ,J**"'(X,Y; Z(y,b)) is a
finite union of disjoint manifolds, each of which has positive codimension in
J*"(X,Y). Thus, if f: X — Y is such that f**! is transversal to each of these
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manifolds, then X ~ 3(7, a)(f) is a finite union of manifolds of dimension less
than p.

Let A4,(A,) be a maximal atlas of coordinate functions for X(Y) such that if
a,, a,€ A(A,) and x belongs to the domain of both «, and a,, then
bypar-1(0(%)) € Lo(2). Let pi: X X Y — X andn: J*(X,Y)— X X Y be the
projections. We will define for i = 1, 2 a vector subbundle E,(X,Y) of
n*p *TX over J*(X,Y; 2), which corresponds to E;. An element of n*p,*TX
over 2 is a pair (¢, v) where ¢ e JY(X,Y; 2) and v e TXp,,,,. Let n(¢) =
(x,¥), e € A, be such that a(x) = 0, and § e 4, be such that 5(y) = 0. Then
ppate X. Let Ta(v) = w(v, a),, and define Ei(X,Y) = {(¢, ) € n*p,*TX |
(Bpa™', w(v, @) € E;}. This definition is independent of the choices of « and 8.
We may, in a similar fashion, define a vector subbundle B(X, Y) and a factor
bundle F(X,Y) of n*p*TX over J*(X,Y; ¥), which correspond respectively
to Band F.

The equivariance of y ensures that y induces a morphism of fiber bundles,
"X, Y 7' 2) - E(X,Y)*Q E(X,Y)* ® F(X, Y), which will also be de-
noted 7. If /: X — Y, then E,(f) (respectively B(f), F(f)) will denote f*E(X,Y)
(respectively f~B(X, Y), f*"F(X, Y)) over 2(f). 7 induces a section o(f): Z(f) —
E(N* ® E(f)* ® F(f) defined by f**"e(f)(x) = r(f**'(x)). o(f) is induced by
Lie-bracketing vector fields in E,(f) with vector fields in E,(f) and projecting
onto F(f), i.e., if v;: Z(f) — E,(f) are sections, then a(f)(x)(v,(x) ® v,(x)) is
the projection of [v,, v,1(x) on F(f). If x ¢ 2(f), let L (f) = {[v,, v,)(x)| v, is a
section of E(f)}. Then 2(z, b)(f) = {x e 2(f) |dim (L, + B(f),) = b + dim B(f),}.
If a is maximal with respect to the property that 2(y, a) # ¢, then J**'(p, g) ~
2(y, a) may be written as |J]_, M, where each M, is a manifold invariant under
P, X 2,. If f is M-transversal for each i, then X ~ 3(y, a)({f) is a finite union
of disjoint manifolds of dimension less than p.

We now summarize.

Theorem 3.1. Let g: J*(p, q) — RY be a polynomial, and let X =
{[#1"19($]") # 0}. Let ¥, C £, and £, C ¥, be subgroups. Suppose
that 3 is invariant under £, X %,, and further that E,, E, and B are poly-
nomially determined vector subbundles of 2 X RP, which are invariant under
£y, X £,. Define F by the exactness of 0 B — X X R* - F — 0. Let
x: J**(p, @) — J*(p, q) be the projection, and assume that E, + E, C B. Then -
Lie-bracketing of vector fields in E, with vector fields in E, induces a map
7:77' Y > EXQEFQF, ie., y assigns to each [¢]** e '3 a linear map
71" : (E, @ Ey)yn — Fyn. 71 is equivariant. If b is a nonnegative integer,
let 2(y,b) = {(g}**' € 7' 2 |image y([¢]**") has rank b}. Each 2(y,b) is a
union of a finite number of submanifolds of J**'(p, q) each of which is invari-
ant under #, X 2,. Define B, a bundle over 3(1, b), by B = {([¢]**},v +
w)|([¢]", v) € B, -and the projection of ([$]*,w) on F is an element of the
image of r([¢]**h)}. B is polynomially determined and is invariant under
P» X P, Let a be maximal with respect to the property that 2(y,a) # .
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There is a polynomial h on J**'(p, q) such that X(y, a) = {[¢]**'| h([#]**") = O}.

Let X be a manifold of type £ ,, and Y a manifold of type #,. The bundles
E,; and B induce bundles E(X,Y) and B(X,Y) over JX,Y; 2) and hence
induce bundles E.,(f) and B(f) over X(f) forf: X - Y. If x e 3(f), let L,(f) =
{[v,, v:)(x) | v; is a section of Ef)}. Then X(r, b)(f) = {x e 2(f)|dimension
(L, + B(),) = b + fiber dimension B}). J**'(X,Y) ~ J**''(X,Y; X(r, a))
may be written as a finite union of manifolds of positive codimension in
J**WX,Y). If f: X - Y is such that {**' is transversal to each of these man-
ifolds, then {x ¢ X|x¢ 2(f) or dim(L, + B(f),) # a + fiber dimension B} is a
finite union of manifolds of dimension less than p.

The set of functions obeying the above transversality conditions is a Baire
set in C**%(X, Y), and is open and dense if X is compact.

Corollary 3.2. Let p > g, X be a real p-manifold, and Y be a complex q-
manifold. If f: X —>Y and x e X, let E.(f) = {v e TX,|iTf(v) e TA(TX,)} and
E(f) = U{E.(f)|x € X}. Let L(f) be the Lie algebra of vector fields generated
by vector fields in E(f). If xe X, let L (f) = {v(x)|v e L(f)}. Let S(f) =
{x e X|L,(f) + TX,}. Then there are an integer m and a Baire set ¥ (open
and dense if X is compact) in C™(X,Y) such that if f ¢ F then S(f) is contain-
ed in a finite union of manifolds of dimension less than p.

Proof. Case 1, p > 2q: Let ¥ = {[¢]' ¢ J'(p,29)|T¢, has rank 2q}.
Straightforward linear algebra shows that if f: X — Y and xe 3(f), then
E.(f) = TX,. Let F = {f: X — Y |f is Z(a)-transversal for all a}.

Case 2, p < 2q: Identify R* with C9, and let 2* = {[¢]' e J'(p,29)| T,
has rank p and T¢(TRZ) + iT¢(TR?) = TC;}. There is a polynomial g' on
J'(p, 2q) such that [¢]' € 2" if and only if g'([¢]") % 0. Let E' = {({g]", v) | [#]' € 2"
and T¢(v,) € iTH(TRE)}. Now suppose that g* is a polynomial on J*(p, 2q),
X% = {[¢]* | g*([¢]*) + O}, and E* is a polynomially determined vector sub-
bundle of X* X R?. Define F* by the exactness of 0 — E* - 3* X R? - F -0,
let z**': JEr, — JE, 2, be the projection, and 7*: (z¥*1)"'13* — E¥* @ E* @ F*
be the map induced by Lie-bracketing. Let ¢* be maximal with respect to the
property that X*(y*, a*)  ¢. Define J**! = X*(y*, d*), and let g**! be a poly-
nomial on J§; '}, such that [¢#]*+' ¢ 3%+ if and only if g**'([¢]**") %= 0. Com-
plete the inductive definition by defining E**' = {([¢]**', v + w) e J**' X
R?|([¢]*,v) ¢ E* and the projection of ([¢]*,w) on F* is in the image of
r*([p]**D}. The proof will be complete if we can show that there is a k& such
that E* = 3* X R? (for then we can choose m = k + 1). To show this it suf-
fices to show that if E/ = 37 X R”® then a’/ & 0.

But suppose E7 = X7 X R? and ¢: R? — (¥ is such that [¢]/ ¢ 37. We may
assume that D¢, is given by

i 0
. 0

0 1
0 | by
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where I,,_, denotes the (2q — p) X (2g — p) identity matrix, and the matrix
in the upper left hand corner has 1 for each (k, 2k — 1)-entry and i for each
(k,2k)-entry. Let U be a small open neighborhood of the origin in R?. If
u: U — R? defines a section é: U — TR? by #i(x) = u(x),.

We may find functions v, w: U — R? such that

iy »0) =(@,0,...,0),

ii) ifxeU, thenv,(x) =1; andif 2 < k < 2p — 24q, then v,(x) = 0,

iii) if x e U, then iD¢,v(x) = D¢ w(x).

Define functions f and g from U to R? by ¢(x) = f(x) + ig(x). If x ¢ U, let
A(x) be the matrix consisting of the last 2¢ — p columns of Df_, and B(x) be
the matrix consisting of the last 2¢g — p columns of Dg,. Let M(x) be the

B(X)  Df,

Q2q) x (2g9) matrix ( AX) — Dgz)’ and let N(x) be the first column of

vzy—2q+1(x)

<g?;)- If v,w obey D-ii), then M(x) 3‘18 + N(x) = Ofor all xe U.

Wp(x)

Repeated differentiation of this matrix equation enables us to compute the
derivatives of v and w in terms of the derivatives of f and g. In particular, if
n is an integer, the nth order derivatives of v and w at the origin are determined
by the (n + 1)-jets of f and g at the origin. Also if 2p — 29 + 1 < k < p,
there are real numbers R, and S, depending only on [#]’ such that

3w, 39, g,

0= — ) + ZE0) + R, ,
ox{ © ax{dx, ) ox{*! © *
aj’vk 0) — aj+]gk (0) aijfk’(O) Slc .

i~ N \ "
oxi 'ox, oxi~'ox: oxjox,

Define a vector field L, by L, = [#,w], and define L,,, = [?,L,] if L, is
defined. A direct computation shows that the kth component of L,,,(0) is
(@/wy, [0x{)(0) — (8%v, /ox{~'9x,)(0) + T, where T, depends only on the deriva-
tives of v and w at the origin of order less than j. It follows that if 2p — 2q +
1 < k < p, then the kth component of L,,,(0) is —((37/*'g,/3x{*D(0) +
©7*'g, /0x{~'9x3)(0)) + U, where U, depends only on [¢]/. Thus given [¢]’ € 2/
one can choose [¢]7*! ¢ (z/*")~!([¢]’) in such a way that y?({¢]’*") £ 0,s0a; # 0
and the result follows.

4. Results on extendibility

We briefly review the terminology and principal result of [5].
If ¥V is a real vector bundle, ¥V ® C has a natural automorphism “~ ” ob-
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tained by extending complex conjugation from C. There is a natural linear map
re: V. ® C — V, which is just “taking real parts”.

The holomorphic tangent bundle H(C™) of C" is the complex subbundle of
T(C™) @ C generated (at p € C*) by tangent vectors of the form }; a,(3/3z,),.
Let W be a real differentiable submanifold of C*. H(W), the holomorphic
tangent bundle of W, is just H(C™) N (T(W) ® C) over W. L (W) (called the
Levi algebra of W in [5]) is the Lie algebra of vector fields generated by sec-
tions of H(W) and H(W).

Then VA3 of [5] gives:

Theorem 4.1. Suppose W is a real (n + k)-dimensional differentiable sub-
manifold of an n-dimensional complex manifold Y, and that fiber dimc H(W) =k
(H(W) can be defined locully as above). Then W is extendible to a subset of Y
containing u real submanifold N with dimN = n + e where e = sup fiber
dim; L2 (W).

It is easy to connect the work of § 3 with this theorem. ¥ f: X — Y isasin
Corollary 3.2, then take W = f(X). The bundle £ (f) of Corollary 3.2 is just
re(HW) + HW)). The integer ¢ of Theorem 4.1 above can bc obtained as
sup fiber dimp L(f) (L(f) as in Corollary 3.2). This is true, since (W) = (W)
are re (W) = L(f).

We say that a subset S of a complex manifold Y is locally extendible to an
open set if and only if every relatively open subset of § is extendible to a set
containing an open subset of Y. Clearly, a set which is locally extendible to an
open set is extendible to a set containing an open subsct of Y. Then the re-
marks at the end of Corollary 3.2 transfate as:

Theorem 4.2. Let X be an (n + k)-dimensional reul differentiable mani-
fold, and Y un n-dimensional complex manifold. Let .# be a set of maps from
X to Y, equipped with the C™ topology (m sufficiently large).

a) If X is compact, then there is un open and dense subset O of 4, such
that if f € @, then f(X) is locally extendible (and hence extendible) to an open
subset of Y.

b) If X is not compact, then there is a Baire subset of .# with the same
properties as O in a).

Proof. We prove a). Take for @ the set of functions described in Corollary
3.2, and suppose f € @. Then fiber dim, L(f) = n except possibly on some lower
dimensional manifolds. An open subst of X has, therefore, some point where
fiber dimg £(f(X)) = n. Applying Theorem 4.1 shows that f(X) is locally
extendible to an open subset of Y. b) is proven similarly.

Remark. The integer # in the statement of Theorem 4.2 above can be more
explicitly obtained by carefully examining the work of § 3. In particular, if
dim, X = dimg Y + 1, then m = dimg X suffices. (In fact, as dimg, X in-
creases, m can be much less than dim, X.)

Precise results will be given in a forthcoming paper by M. Menn,
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We can derive a simple corollary about analyticity in maximal ideal spaces
of function algebras. (See [4] for background on function algebras.) Suppose
K is a compact subset of C*. C(K) will denote the algebra of continuous com-
plex-valued functions on K with the uniform norm; AK) is the closure in C(K)
of restrictions to K of functions analytic in a neighborhood of K. spec A(K)
will denote the maximal ideal space of A(K), with the Gelfand topology. We
recall that each function f e A(K) extends to a continuous function } on spec
A(K).

An important question arises: how can one describe the behavior of f on
spec A(K) — K. (See [4, p. 56].) We can contribute the following:

Theorem 4.3. Let 5 be the collection of compact subsets of C", topolo-
gized with the Hausdorff metric [6, p. 131). There is a dense subset D of #
such that if K e D, then there are an open subset U of C* and an embedding
h: U — spec A(K) — K such that foh: U — C is analytic for every f ¢ A(K).

Remarks. 1) We do not know, but suspect, that D is also open in J#.

2) Suppose K e D. Put C = {x ¢ spec A(K) — A(K)|x e image of some
embedding A}. Is C = spec A(K)? (The appropriate corona problem.)

Proof. The subset D of # is the collection of images of all (# + 1)-dimen-
sional compact real manifolds X by maps f: X — C" which have the properties
of Theorem 4.2a). Thus f(X) is extendible to a set containing an open subset
U of C™. Since every analytic function defined in a neighborhood of f(X) ex-
tends to U (with a sup norm on U dominated by that on (X)), we can see that
each element of A(f(X)) extends to U hence evaluation at each point of U is a
member of spec A(F(X)). The Gelfand topology is easily seen to agree with the
natural topology on U. So the elements of D have the desired property.

We must show that D is dense in 5#. If K ¢ >, consider K(t) = K + S()
(vector sum), where S(2) is a closed ball of radius ¢ centered at the origin. As
t — 0, K(t) — K in the Hausdorff metric. The sets K(¢) have a finite number
of arcwise connected components, and it is fairly clear how to approximate
them by images of (n 4+ 1)-dimensional manifolds; then (since C™ approxima-
tion is finer than Hausdorff metric approximation) by elements of D, using the
density of Theorem 4.2a).
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